
BERND HELMLE
www.cybertec-postgresql.com

MAKE BTREE_GIST FASTER

WHAT’S IT ALL ABOUT?

● GiST (Generalized Search Tree)

● Framework for somehow specialized indexes

● btree_gist: extension available in PostgreSQL

● Implements btree-like operators/behavior with GiST

USAGE EXAMPLE (1)
nearest-neighbour-search

1| CREATE TABLE test (a int4);

2| -- create index

3| CREATE INDEX testidx ON test USING GIST (a);

4| ...

5| -- nearest-neighbor search: find the ten entries closest to "42"

6| SELECT *, a <-> 42 AS dist FROM test ORDER BY a <-> 42 LIMIT 10;

USAGE EXAMPLE (2)
Exclusion Constraints

1| CREATE TABLE zoo (

2| cage INTEGER,

3| animal TEXT,

4| EXCLUDE USING GIST (cage WITH =, animal WITH <>)

5|);

WE CAN’T HAVE NICE THINGS
WITHOUT CAVEATS
● Two build methods for GiST: sorted and buffered

● First one is used, if sortsupport for opclasses used by the index is available

● If not, use buffered: inserts each tuple one by one into the new index

● btree_gist opclass lacks sortsupport

SOLUTION

● sortsupport API: Implement sortsupport for btree_gist opclass.

● Extend that idea to builtin range types. . .

THE PATCH (1)

● Original idea implemented by Andrey Borodin in 2020
(https://commitfest.postgresql.org/patch/2824/)

● Committed in PostgreSQL, but reverted

● Some unresolved problems with correct handling of specific datatypes.

THE PATCH (2)

● New attempt by Christoph Heiss and me 2022

● Similar problems

● Needed some time to figure out everything

1| commit e4309f73f698851a2f7d49ca5e98e3e188400891

2| Author: Heikki Linnakangas <heikki.linnakangas@iki.fi>

3| Date: Thu Apr 3 13:46:35 2025 +0300

4|

5| Add support for sorted gist index builds to btree_gist

6|

7| This enables sortsupport in the btree_gist extension for faster builds

8| of gist indexes.

9|

10| Sorted gist index build strategy is the new default now. Regression

11| tests are unchanged (except for one small change in the 'enum' test to

12| add coverage for enum values added later) and are using the sorted

13| build strategy instead.

14|

15| One version of this was committed a long time ago already, in commit

16| 9f984ba6d2, but it was quickly reverted because of buildfarm

17| failures. The failures were presumably caused by some small bugs, but

18| we never got around to debug and commit it again. This patch was

19| written from scratch, implementing the same idea, with some fragments

20| and ideas from the original patch.

21|

22| Author: Bernd Helmle <mailings@oopsware.de>

23| Author: Andrey Borodin <x4mmm@yandex-team.ru>

24| Discussion: https://www.postgresql.org/message-id/64d324ce2a6d535d3f0f3baeeea7b25beff82ce4.camel@oopsware.de

FINALLY

1| commit e9e7b66044c9e3dfa76fd1599d5703acd3e4a3f5

2| Author: Heikki Linnakangas <heikki.linnakangas@iki.fi>

3| Date: Wed Apr 2 19:51:28 2025 +0300

4|

5| Add GiST and btree sortsupport routines for range types

6|

7| For GiST, having a sortsupport function allows building the index

8| using the "sorted build" method, which is much faster.

9|

10| For b-tree, the sortsupport routine doesn't give any new

11| functionality, but speeds up sorting a tiny bit. The difference is not

12| very significant, about 2% in cursory testing on my laptop, because

13| the range type comparison function has quite a lot of overhead from

14| detoasting. In any case, since we have the function for GiST anyway,

15| we might as well register it for the btree opfamily too.

16|

17| Author: Bernd Helmle <mailings@oopsware.de>

18| Discussion:https://www.postgresql.org/message-id/64d324ce2a6d535d3f0f3baeeea7b25beff82ce4.camel@oopsware.de

FINALLY

SOME NUMBERS (1)
1| init.pgbench script for performance testing

2|

3| BEGIN;

4|

5| DROP TABLE IF EXISTS test_dataset;

6| CREATE TABLE test_dataset(keyid integer not null, id uuid not null,

7| block_range int4range);

8| CREATE TEMP SEQUENCE testset_seq;

9| INSERT INTO test_dataset SELECT nextval('testset_seq'), id, block_range

10| FROM test ORDER BY random() LIMIT 10000;

11| CREATE UNIQUE INDEX ON test_dataset(keyid);

12|

13| COMMIT;

SOME NUMBERS (2)
1| \set keyid random(1, 10000)

2| SELECT id, block_range FROM test_dataset WHERE keyid = :keyid Ägset

3| SELECT id, block_range FROM test WHERE id = ':id' AND block_range &&

4| ':block_range';

SOME NUMBERS (3)

Figure 1: GiST Build timing

SOME NUMBERS (4)

Figure 2: GiST Build timing

BERND HELMLE
SENIOR DATABASE ENGINEER
EMAIL
bernd.helmle@cybertec.at

PHONE
+4917680133292

www.cybertec-postgresql.com

@cybertec-postgresql

www.youtube.com/@cybertecpostgresql

